Beta Jacobi Ensembles and Associated Jacobi Polynomials
نویسندگان
چکیده
Beta ensembles on the real line with three classical weights (Gaussian, Laguerre and Jacobi) are now realized as eigenvalues of certain tridiagonal random matrices. The paper deals beta Jacobi ensembles, type weight. Making use matrix model, we show that in regime where $\beta N \to const \in [0, \infty)$, $N$ system size, empirical distribution converges weakly to a limiting measure which belongs new class probability measures associated polynomials. This is analogous existing results for other two weights. We also study behavior process processes same obtain dynamic version above.
منابع مشابه
Limit theorems for beta-Jacobi ensembles
For a β-Jacobi ensemble determined by parameters a1, a2 and n, under the restriction that the three parameters go to infinity with n and a1 being of small orders of a2, we obtain some limit theorems about the eigenvalues. In particular, we derive the asymptotic distributions for the largest and the smallest eigenvalues, the central limit theorems of the eigenvalues, and the limiting distributio...
متن کاملLaguerre and Jacobi polynomials
We present results on co-recursive associated Laguerre and Jacobi polynomials which are of interest for the solution of the Chapman-Kolmogorov equations of some birth and death processes with or without absorption. Explicit forms, generating functions, and absolutely continuous part of the spectral measures are given. We derive fourth-order differential equations satisfied by the polynomials wi...
متن کاملSzegö on Jacobi Polynomials
One of the interesting features in the development of analysis in the twentieth century is the remarkable growth, in various directions, of the theory of orthogonal functions. Two brilliant achievements on the threshold of this century—Fejér's paper on Fourier series and Fredholm's papers on integral equations—have been acting as a powerful inspiring source of attraction, inviting analysts to d...
متن کاملSmallest eigenvalue distributions for two classes of $\beta$-Jacobi ensembles
We compute the exact and limiting smallest eigenvalue distributions for a class of β-Jacobi ensembles not covered by previous studies. In the general β case, these distributions are given by multivariate hypergeometric 2F 2/β 1 functions, whose behavior can be analyzed asymptotically for special values of β which include β ∈ 2N+ as well as for β = 1. Interest in these objects stems from their c...
متن کاملOzeki Polynomials and Jacobi Forms
A Jacobi polynomial was introduced by Ozeki. It corresponds to the codes over F2. Later, Bannai and Ozeki showed how to construct Jacobi forms with various index using a Jacobi polynomial corresponding to the binary codes. It generalizes Broué-Enguehard map. In this paper, we study Jacobi polynomial which corresponds to the codes over F2f . We show how to construct Jacobi forms with various ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2021
ISSN: ['0022-4715', '1572-9613']
DOI: https://doi.org/10.1007/s10955-021-02832-z